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Abstract—The purpose of the current work is to present the 
effectiveness of multiple tuned mass dampers (MTMD) to control the 
vibration of structures under earthquake load. A Stochastic 
Structural based optimization of Single Tuned Mass Damper (STMD) 
and Multiple Tuned Mass Dampers (MTMD) parameters in seismic 
vibration control under bounded uncertain system parameters is 
presented. The study on MTMD with random parameters in a 
probabilistic framework is significant. So it is required to accumulate 
the necessary information about parameters uncertainties. In such 
cases, the interval method is a feasible alternative. Applying matrix 
perturbation theory through a first order Taylor series expansion 
about the mean values of the uncertain parameters’ conservative 
dynamic response bounds are obtained assuming a small degree of 
parameter uncertainty. The interval extension technique permits the 
transformation of the problem, initially non-deterministic, into two 
independents deterministic sub- problems yielding the lower and 
upper bound solutions. A numerical study is performed to enlighten 
the effect of parameters’ uncertainties on the MTMD parameters’ 
optimization and the safety of the structure. The parametric study is 
also conducted to define the influence of several parameters (mass 
ratio, damping ratio of structure) on the effectiveness and robustness 
of MTMDs considering uniform mass distribution in comparison with 
single tuned mass damper (STMD).  

1. INTRODUCTION 

Lately, due to lack of land space, financial requirements and 
new developments of construction techniques have induced an 
increased presence of skyscrapers and other tall structures. 
The occupants in the upper floors of tall buildings feel 
discomfort due to structural vibrations caused by dynamic 
loadings such as earthquake and wind loadings. Thus, 
mitigating the responses of such structures to external 
dynamic loads is needed. 

Tuned mass damper is the oldest passive vibration control 
device implemented to mitigate the structural vibration. 

The natural frequency of the TMD is tuned in resonance with 
the fundamental mode of the building structure, so that the 
huge amount of the structural vibrating energy is transferred to 
the TMD and dissipated by the damping as the building 

structure is subjected to earthquake loads. Multiple tuned mass 
dampers (MTMD) can be proposed in a parallel or series 
configuration. 

The classical approach to designing these structures is to 
consider deterministic models and parameters, respectively 
[1,2]. The uncertainties in models and structural parameters, 
such as mechanical characteristics, external loading and 
geometric parameters, are introduced in the design process in 
adopting some simplifying hypotheses. These hypotheses 
could be either by making use of the parameters' mean values, 
the use of extreme values, or considering of high level safety 
factor to ensure the reliability of the designed structures. 
However, these simplifying assumptions do not yield optimal 
design in comply with the increasing demand of safer and 
more economic structures[1,3]. In fact, uncertainties into 
structure parameters and into external loadings are already 
there; neglecting their effects on structure response could lead 
to a non-reliable and/or less economic design; hence, the 
uncertainties' analysis and response variability must be 
strongly taken into account to get optimal design. Multiple 
Tuned Mass Damper (MTMD) [2,4,5] has been studied as 
passive vibration control problems[6]. It has been 
demonstrated that MTMD with distributed natural frequencies 
are more effective than a single TMD. In presence of 
structural and external loading uncertainties, the main task in 
designing MTMD parameters is to obtain the appropriate 
natural frequency and the damping ratio considering these 
uncertainties. Two categories of methods can be carrying out 
to describe uncertainties: the probabilistic and the non-
probabilistic methods [9]. Nevertheless, these methods cannot 
be applied when the statistical parameters are insufficient 
[11,12]. In many practical cases, parameters are only 
described in a non-probabilistic way by their extreme and 
mean values and they are called uncertain but bounded (UBB) 
parameters [6,12,13]. In this context, the convex models and 
interval analysis methods could be carried out [14]. Interval 
analysis was firstly used for mechanical engineering in order 
to solve the extremum of static response for structures in 
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presence of UBB parameters. In such problems, optimization 
consists in finding the optimal parameters of the TMD in 
presence of uncertain bounded structural parameters and in 
presence of stochastic external loading. For the SSO problem, 
the standard deviation of the structural response will be 
minimized. Given the fact that optimization problems for SSO 
involve UBB parameters, the expected optimized solutions 
should be bounded and defined over an interval. This 
technique is based on a Taylor expansion followed by an 
interval extension allows splitting the initial non- deterministic 
optimization problem (which involves UBB parameters) into 
two independent deterministic sub-problems involving the 
upper and the lower bounds solutions. The purpose of this 
work is to investigate and discuss the efficiency and the 
validity of this technique for various levels of uncertainties 
when applied with MTMD optimization strategy: the SSO 
problems. The technique is based on monotonic assumption of 
the objective function. The MTMD location for continuous 
system was also investigated and it has been shown that it has 
no effects on the optimized results using the studied method. 

2. THEORETICAL FORMULATION 

2.1. Designing of MTMD  

The aim of designing MTMD is to tune damper parameters to 
the fundamental mode of vibration. It means that the natural 
damper frequency (or a group of dampers) must be close to the 
natural frequency of fundamental vibration mode of structure. 
Moreover, the damping coefficient of the damper must be 
appropriately chosen by (Zuo and Nayfeh, 2005) and is 
obtained using equations developed by Den Hartog (1956) for 
the SDOF damper.The optimum parameters of such a damper 
(or group of MTMD) can be obtained from the formulae given 
in a paper (Warburton 1982). The optimal frequency ratio is 
determined from: 

ࢊ࣓
૛

࢙࣓
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૛ାࣆ

૛ሺ૚ାࣆሻ૛
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2.2. The Dynamic Equation of Motion of Structure and 
MTMD System  

The equation of motion [2,9] of a SDOF system attached with 
MTMD (as shown in Fig.1) can be expressed as, 

ሷࢄࡹ ൅ ሶࢄ࡯ ൅ ࢄࡷ ൌ െ࢘ࡹതࢠሷ  (3)  ࢈

Where, ࢄ ൌ	 ሾ࢙࢞, ,૚࢞ ,૛࢞  is the relative displacement ࢀሿ࢔࢞…
vector, and	࢘ഥ ൌ ሾ૙	ࡵሿࢀ, where I is an nx1 unit vector. M, C and 
K represent the mass, damping and stiffness matrix of the 
combined system. 

 
Fig. 1: Structure-MTMD System 

ࡹ ൌ ቂ࢙ࡹ ૙
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Where, ࢙ࡹ is the mass of structure and m is the matrix of 
dampers. 
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Where, ࢙ࡷ is the stiffness of structure. 
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The damping matrix of the system C is in a form similar to 
that of the stiffness matrix K. 
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Where, ࢙࡯	is	the	damping	of	structure. 
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Introducing the state space vector, 
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Where, ࢙࡭ ൌ ൤
૙ ࡵ
࢑ࡴ ࢉࡴ

൨ 

࢑ࡴ ൌ 	െିࡹ૚ࡷ and ࢉࡴ ൌ 	െିࡹ૚࡯ 

In which ࢘ത ൌ ሾ૙  with I and 0 is the (n+1)x(n+1) unit and ࢀሿࡵ
null matrices, respectively. 

2.3. Determination of Response Covariance 

The structure-MTMD system as shown in Fig.1 is subjected to 
stochastic load due to the random seismic acceleration that 
excites the primary structure at base. A widely adopted 
stationary model of ࢠሷ  ሻ is obtained by filtering a white noise࢚ሺ࢈
process acting at the bed rock through a linear filter which 
represents the surface ground. This is the well-known Kanai–
Tajimi stochastic process [Tajimi 1960] [6] which is able to 
characterize the input frequency content for a wide range of 
practical situations. The process of excitation at the base can 
be described as: ࢞ሷ ሻ࢚ሺࢌ ൅ 	૛࢞ࢌ࣓ࢌࢿሶ ࢌ ൅	࣓ࢌ

૛ࢌ࢞ ൌ 	െ࣓ሺ࢚ሻ and  
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Where, ࣓ሺ࢚ሻ is a stationary Gaussian zero mean white noise 
process, representing the excitation at the bed rock, ࣓ࢌ is the 
base filter frequency and ࢌࢿ is the filter or around damping. 
Defining the global state space vector is defined as: 

ࢆ ൌ ,࢟ൣ ,࢞ ,ࢌ࢞ ሶ࢟ , ሶ࢞ , ሶ࢞ ൧ࢌ
ࢀ
 

Eqn. (7) and (8) leads to an algebraic matrix equation of order 
six i.e. the so called Lyapunov equation (Lutes and Sarkani 
2001): 
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The details of the state space matrix A and B in Eqn. (9) are as 
below: 
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The space state covariance matrix R is obtained as the solution 
of the Lyapunov equation. The state space covariance matrix 
R is obtained as solution of the Lyapunov equation. It is 
represented as: 

ࡾ ൌ	 ൤
ࢠࢠࡾ ሶࢠࢠࡾ
ࢠሶࢠࡾ ሶࢠࡾ ሶࢠ

൨      (12) 

The root mean square of displacement (RMSD) of the TMD 
and that of the primary structure can be obtained as: 

࢕࢞࣌ ൌ 	ඥࢠࢠࡾሺ૛, ૛ሻ      (13) 

In the following sections, besides the stochastic loading, the 
system matrices (A, B) defined in Eq. (9) will be considered as 
uncertain and the TMD parameters will be optimized in order 
to minimize some objective function. 

When structure parameters	࢞ ൌ ሺ࢞૚, ,૛࢞ ,૜࢞  ૜ሻ, q is the࢞…
number of uncertain parameters, are UBB parameters, it is 
convenient to describe them using intervals. Let ࢄ ൌ
,૚ࢄൣ	 ,૛ࢄ  ൧ be the corresponding box then for everyࢗࢄ…,૜ࢄ
࢏࢞ ∈ ࢏ࢄ	the corresponding interval is ࢞ ൌ 	 ,࢏࢞ൣ  ൧. Introducing࢏࢞
the mean value ࢏ࣆ of ࢏ࢄ and the maximum deviation ∆࢏࢞ from 
the mean, the uncertain but bounded parameter can be written 
as: 

࢏ࢄ ൌ 	 ,࢏࢞ൣ ൧࢏࢞ ൌ 	 ሾ࢏ࣆ െ ,	࢏࢞∆ ࢏ࣆ ൅ ሿ࢏࢞∆ ൌ ࢏ࣆ	 ൅	࢏࢞∆∆ࢋ 

where	ࢋ∆ ൌ ሾെ૚, ૚ሿ 

Then, the ith such interval variable [6] can be defined as 

 

Fig. 2: The variation of RMSD with a varying mass ratio 

࢏࢞ ൌ ࢏ࣆ ൅ |࢏࢞ࢾ|	ࢋ࢘ࢋࢎ࢝	࢏࢞ࢾ ൏ ,࢏࢞∆ ࢏ ൌ ૚…… .  ࢗ

Any response variable f(x) that depends on UBB parameter X 
is also UBB response. Assuming that the level of uncertainties 
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is small, the response can be expanded in the Taylor series 
about the mean value ࣆ ൌ ሺࣆ૚ … . .  ሻ in the first order termsࢗࣆ
of ࢏࢞ࢾ ∈ ሾെ∆࢏࢞,  :ሿ as࢏࢞∆

ሻ࢞ሺࢌ ൌ ሻࣆሺࢌ	 ൅	∑
ࢌࣔ

࢏࢞ࣔ
࢏࢞ࢾ ൅	…

ࢗ
ୀ૚࢏     (14) 

By making use of the interval extension [6,11,12] in interval 
mathematics and adopting the monotonic assumption, the 
interval region of the function involving the UBB parameters 
can be separated out to the upper and lower bound function as 
follows:   
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ࢗ
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In the above, the interval region of the objective function 
involving the UBB parameters is separated out to upper bound 
and the lower bound function. Thus, the optimization problem 
now involves two separate objective functions correspond to 
the lower bound and the upper bound solutions.  

3. OPTIMIZATION STRATEGY, THE SSO  

The system matrices A and B, defined in Eq. (9), involve UBB 
parameters then the associated response covariance matrix R 
will also involve these parameters. The system matrices can be 
approximated using Taylor expansion and written in the form 
of Eq. (15). From Eq. (9), one can obtain the after neglecting 
the higher order term in the first order Taylor series following 
equations:  

 

Fig. 3: The variation of RMSD with a varying  
damping ratio of structure 
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It can be further noted that the RMSD of the primary structure 
as defined by Eq. (13) is also a function of UBB parameters 
and can be expanded in the first order Taylor series as the 
mean and fluctuating part as below: 

࢞࣌ ൌ ࢕࢞࣌	 ൅	∑
࢞࣌ࣔ
࢏࢞ࣔ

࢏࢞ࢾ ൅	…
࢓
ୀ૚࢏      (19) 

The sensitivity of the RMSD of the primary structure can be 
readily obtained by differentiating Eq. (13) w.r.t ith uncertain 
parameter as: 
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In which, 
࢞࣌ࣔ
࢏࢞ࣔ

 can be obtained by solving Eq. (19). The interval 

stiffness and mass matrix can be obtained directly with the 
interval parameters. By using the interval extension in the 
interval mathematics, the interval extention of Eq. (20) can be 
obtained as : 

࢛	࢞࣌ ൌ ࢕࣌	 ൅	∑
࢞࣌ࣔ
࢏࢞ࣔ

࢏࢞∆ ൅	…
࢓
ୀ૚࢏ and 

࢒	࢞࣌ ൌ ࢕࣌	 െ	∑
࢞࣌ࣔ
࢏࢞ࣔ

࢏࢞∆ ൅	…
࢓
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In the above, the interval region of the objective function 
involving the UBB parameters is separated out to upper bound 
and the lower bound function. Thus, the optimization problem 
now involves two separate objective functions correspond to 
the lower bound and the upper bound solutions. 

4. NUMERICAL STUDY 

A TMD attached to a primary system is undertaken to 
elucidate the proposed TMD parameter’s optimization 
procedure considering UBB type system parameters. The 
uncertainties are considered in ߱௙, ,௙ߝ ߱௦,  ܵ௢. The	ܽ݊݀	௦ߝ
uncertainties in any such i-th parameter, ௜ܺ are described by 
∆ ௜ܺ representing the maximum possible dispersion expressed 
in terms of the percentage of corresponding nominal value 
( തܺ௜). Unless mentioned otherwise, the following nominal 
values are assumed for the present numerical study: 

߱௙ ൌ ௙ߝ ,ݏ/݀ܽݎ	ߨ9 ൌ 0.4, ߱௦ ൌ ௦ߝ ,ݏ/݀ܽݎ	ߨ6 ൌ 0.03 
ܵ௢ ൌ 0.03	݉ଶିݏଷ, ߤ ൌ 0.05. 

The optimized results for STMD & MTMD will be compared 
with respect to the deterministic optimization, where mean 
values of uncertain parameters are taken. In the present study, 
optimizations are performed using the genetic algorithm 
available with the MATLAB Global Optimization Toolbox. 

Using proposed optimization procedure considering the upper 
and lower bound objective function as represented by Eq. (21), 
the optimum TMD parameters are obtained. 

The mass ratio taken here is 5%. Fig. 2 and Fig. 3 show the 
variation of RMSD with a varying mass ratio and damping 
ratio of structure respectively for 1, 2 and 4 TMDs. It clearly 
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proves that increasing the value of Mass ratio or Damping 
ratio of structure will lead to the decrease in the value of 
RMSD. In addition to this, as number of TMDs (MTMD) 
increases, the value of RMSD decreases which clearly proves 
that MTMD is more useful in mitigating the vibrations in a 
structure than STMD. 

Fig. 4, Fig. 5 and Fig. 6 shows the graph of different 
parameters with their deterministic value and upper bound and 
lower bound value for single tuned mass damper (STMD). 

Fig. 7, Fig. 8 and Fig. 9 shows the graph of different 
parameters with their deterministic value and upper bound and 
lower bound value for two tuned mass damper (MTMD). Thus 
examining the graphs of both STMD & MTMD, it is clear that 
there is a decrease in the RMSD value when single TMD is 
replaced by two TMDs. As expected, the optimum TMD 
parameter and the probability of failure results considering a 
deterministic system parameter is within the bounded solution. 
However the width of the bounded solution band increases as 
the level of uncertainty increases. 

 
Fig. 4: The variation of Optimum Frequency, ࣓ࢊ with a  

varying level of uncertainty, ∆ࢄ (1 TMD) 

 

Fig. 5: The variation of RMSD with a varying level of 
 uncertainty, ∆ࢄ (1 TMD) 

 

Fig.6 The variation of Optimum Damping Ratio, ࢊࢿ with a 
varying level of uncertainty, ∆ࢄ	(1 TMD) 

 

Fig. 7: The variation of Optimum Frequency, ࣓ࢊ with a varying 
level of uncertainty, ∆ࢄ (2 TMD) 

 

Fig. 8: The variation of RMSD with a varying level of 
uncertainty, ∆ࢄ (2 TMD) 
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Fig. 9: The variation of Optimum Damping Ratio, ࢊࢿ with a 
varying level of uncertainty, ∆ࢄ	(2 TMD) 

5. CONCLUSION 

In this paper, a MTMD model is studied and the results are 
compared with the STMD. Optimization strategies used is the 
stochastic structural optimization (SSO). In presence of 
uncertain bounded structural parameters, the method permits 
splitting the initial non deterministic problem into two 
deterministic independent sub-problems. The optimized upper 
and lower bounds of the root mean square displacement in the 
SSO problems are linear functions of uncertainties and they 
are divergent of the deterministic optimized value, which is 
completely reasonable because larger is the range of 
uncertainties, larger is the range of optimized bounds. These 
results still valid even for different locations of the TMD on 
the beam, only the deterministic value is affected and both 
bounds are in one side and in the other of the deterministic 
value. According to the obtained results for a STMD & 
MTMD, it is clear that MTMD helps in mitigating the 
vibrations in a structure than STMD. 
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